Geometry, Art, and Cultural Relevance with Computational Thinking

Brittany Pines

Rachel Adler, Joseph Hibdon, Jennifer Slate, Sudha Srinivas, Durene Wheeler, Hanna Kim, Scott Mayle

NSF #1640041
Northeastern Illinois University
Introduction

• The Math, Science, and Technology for Quality Education (MSTQE) at Northeastern Illinois University (NEIU) is an interdisciplinary undergraduate math and science content preparation program for preservice elementary and middle school teachers.

• It is a Bridge program with students from Chicago Community Colleges who take classes together with NEIU students.

• As part of an NSF STEM+C grant, we integrated computational thinking (CT) into the curriculum for our MSTQE Program.
Integration of CT into the Curriculum

• New **Computer Science for All** course
 • Overview of CT, **Scratch, Robotics, VPython/Python**

• Integration of CT into **STEM Content Courses**
 • **Biology** - **NetLogo** to model an epidemic
 • **Physics** - **VPython** to learn about physical concepts in mechanics (vectors, motion, forces, energy)
 • **Geometry** - **Scratch** to model geometric concepts and art

• Integration of CT into **Teaching Methods Course**
 • **Science Methods** - **Robotics** to simulate earthquakes
Methodology

• We used the following methods of assessment:
 • Students completed both a pre- and post-semester survey rating their self-efficacy in CT.
 • Student Focus Groups/Faculty Interviews
• Geometry and Physics are paired in the MSTQE program
• Physics and Geometry are designed so that their curriculum reinforces concepts.
Scratch / Geometer’s Sketchpad Module Overview
Pacing Guide

Week 1 - September 10 : Introduction to Scratch (Lesson 1); talk about final project
Assignment #1 (Due Week 2) - pick a piece of art

Week 2 - September 17: Scratch - square and triangle (Lesson 2); share chosen pieces of art with class
Assignment #2 (Due Week 3) - pick a partner

Week 3 - September 26: Scratch - pentagon and hexagon, loops and conditionals (Lesson 3);
Assignment #3 (Due Week 4) - identify key parts of art piece that you want to recreate using Scratch

Week 4 - October 3: Scratch - Write script for key parts you identified

Week 5 - October 10: Scratch - variables and equations, filling in shapes (Lesson 4); Lily and Paul will present their poster/final art piece

Week 6 - October 17: Scratch - re-write script based on variable and equations - can you condense script; fill-in shapes

Week 7 - October 24: Scratch - work on revising script

Week 8 - October 31: Scratch - background images, custom blocks, saving and combining projects (Lesson 5)
Assignment #3 (Due Week 10) - work with partner and talk about how you will merge the two art pieces

Week 9 - November 7: Scratch - work on revising script and begin to merge art pieces

Week 10 - November 14: Scratch - work on revising script and begin to merge art pieces

Week 11 - November 21: Scratch - work on revising script and begin to merge art pieces

Week 12 - December 5: Final Project Presentations
SCRATCH FINAL PROJECT GUIDELINES
Individual Write-Up

a. An image of the chosen piece of art (with proper citation) and art you created in SCRATCH along with a brief description of the art and its relevance to you
b. A brief description (1-2 paragraphs) of the mathematical representation of the project. (For instance, what mathematical concepts did you choose to explore and why?)
c. An explanation of why the chosen art piece is appropriate given your strengths, backgrounds, and interests.
d. A flowchart/algorithm of how to draw geometric shapes you are choosing to represent in the piece of art.
e. Interpret the image drawn and does “your” drawing correspond to algorithm/flowchart you described? Does it match “your” intended outcome or expectations?
f. Share your code via the following: 1) share the URL; 2) copy code into written assignment
g. Answer the following questions:
 1. How would you apply this to other disciplines?
 2. What other discipline could you incorporate into this project (besides art)?
 3. Are there ways to connect this project to other courses you have taken or what you plan to take in the future?
 4. How would you incorporate this project or ideas from this project in your future classroom? (you will include this response in the poster)
You and your partner will put together a poster that showcases your individual work and your combined piece of art. You should follow the guidelines provided to you in “How to Create a Poster for a Presentation.” The poster should include sections as follows:

A. Title, Class and Authors
B. Images of each individual piece of art and newly created art using SCRATCH
C. Summary of each Individual Write-Up focusing on Geometric and CT Concepts addressed/explored;
C. Image of created art when you merged the two together using SCRATCH
D. Summary of geometric and CT concepts that were addressed/explored when you merged the two pieces together
E. Submit merged code via URL (does not go on the poster)
F. Summary of what you learned from each other and the project and how you would incorporate this project or ideas from this project in your future classroom.
Summary

- When combining our artwork we included the sun vectors inside the bowl to replace the apples that were originally in the painting.
- The new painting we created is now "Bowl of Sun Vectors" By Aileen and Zain.

Student A

- The art I created on scratch is a pattern of sun vectors that reminds me of the times that I used abstract for previous photography classes in my high school years.
- The exploration were basic geometric shapes. I used the circle and the triangle from the basic geometric shapes to create a sun. The sun represents an abstract meaning a composition created from a shape and color line that has a visual reference in the world. I chose these concepts because they seemed easy but quite a challenge when putting them together as one.

Student B

- The art I created with coding on scratch is a series of circles inside a bowl with a stand.
- The mathematical concept I used to create this was the reflection of a mirror image for the bowl and the stand as well as creating a circle by rotating the pen down 360 times.
Broken Son of Columns
by Kathleen and Yazmine
Combined Projects

Summary

- A little bit about your combination
 - The head and top of the hat are mainly scripts of circles.
 - The body consists of rectangles and lines.
 - Kathleen’s project had a perfect interpretation of a face
 and Yazmine had a column to be used as a body to hold
 up the head.
 - One main issue we had was sharing codes that were
 undefined once it was coded.
 - We had to include the definitions of the scripts and
 replace them with new variables.

Summary

- The Broken Column is a self-portrait by Frida Kahlo. It portrays pain
 and suffering after her spinal surgery.
 - I chose this piece of art because I saw beauty and strength in this
 painting.
- My interpretation does not include the body, so the main focus is the
 broken column.
 - The column and corset is made up of rectangles and her hospital
 sheet is coded to create a 30-60-90 triangle.

Kathleen's Project

The Son of Man, 1946 by Rene Magritte

An Interpretation.

Yazmine’s Project

The Broken Column, 1944 by Frida Kahlo

An Interpretation.
Survey Results

I am able to learn to incorporate computing concepts in my teaching.

I am able to break a complex problem into smaller, more manageable
I am able to manipulate a system's variables or components to achieve a desired result.

Question 9

I am able to modify existing computer code to complete small tasks in subject areas I am familiar with.

Question 10
I understand how computational skills/tools could be applied to a variety of topics.

I am confident in my ability to use computational thinking to understand or analyze problems.
Conclusion

• Students in all courses demonstrated gains in confidence that they could use CT to solve or analyze problems, but Physics and Geometry students demonstrated the greatest growth in this area.

• Students’ strongest increase was in understanding computing concepts well enough to teach them someday, a statistically significant change over the semester (t=-2.359, df=82, p=.021). Students in all courses exhibited gains in this area. Physics and Geometry students demonstrated the highest growth over the semester.

• All of the students reported that the module had increased their confidence in their ability to learn computer science. For example, one of the students described her incoming confidence as “really bad,” but said that the module had “definitely” increased her confidence because “It was definitely a good introduction to coding because it was simple to use, but it still tests you on things, like how to create some things. It was a good first introduction to code, and to try to learn how to use it.” Another student also noted that his confidence was poor at the beginning of the semester but “After seeing how Scratch looked and everything, I was relatively confident. It seemed like a simplified version of how it is to actually code. It didn't seem too bad. I could handle this.”

• Alter and adjust the class to fit students’ needs
Future Work

• Introduce in-service teachers to the modules
• Include CT in other pre-service math and science courses
• Continue to collect more data from students as well as teachers using the modules
• Expand the analysis to other MSTQE courses
• Dissemination - We would like to reach out to other universities and middle schools so that they can use our modules in their own classrooms.