"Building Educational Bridges between Computer Science and Biology through Transdisciplinary Teamwork and Modular Curriculum Design" NSF #1742446

biocsbridge.wpi.edu

Our Bio-CS Bridge motivates integrated high school learning of science and computational thinking with a real-world citizen science Liz Ryder research project

Carolina Ruiz, Shari Weaver, Liz Ryder Worcester Polytechnic Institute (WPI) Rob Gegear, UMass Dartmouth

Motivation for our Research Questions

High Impact Teaching Practices

Adapted from Richard F. Vaz. "High-Impact Practices Work". Inside Higher Ed. June 4, 2019

High-impact teaching practices:

- project-based learning
- community-based learning
- involving students in research

Some Benefits and Challenges:

- promote active engagement
- involve collaboration, in and out of classroom settings
- can push students and teachers out of their comfort zones - <u>thoughtful</u> <u>implementation and support are needed</u> <u>for students and teachers to succeed</u>
- → WPI has been devoted to Ugrad Project-Based Learning very successfully for 50+ years
- → How can we share this expertise and transfer these high-impact practices to high schools?

We are investigating: Engaging Student Learning

with a Real-world Citizen Science Research Project

project-based learning + community learning + involvement in research

Pollinator Decline Research

Dr. Gegear (Co-PI) & Dr. Ryder (PI)

Why are our native pollinators in decline?

Bio-CS Bridge

Engages students and teachers in scientific practices using biological data they collect, and computational tools they help to design and implement

We are also investigating: Transdisciplinary Team

Vertical Integration: high school & univ. student and faculty partnership

- active engagement
- collaboration
- expertise sharing
- joint curriculum development and implementation
- thoughtful implementation and support for students & teachers to succeed

Horizontal Integration: biology and computer science

Insights: What we have learned so far

- Teachers report *strong student engagement* in initial pilot in 2 schools
 - Students enjoy collecting real data and contributing to a research database
 - Using and creating simulations and websites deepens learning
- Transdisciplinary team process was critical in generating truly integrated curriculum that fits teachers' needs
- Creating a balance all perspectives are essential – horizontal and vertical

- Communication is key
 - Learning to speak each other's language
 - Teacher input into software and tutorial development is key
 - What do teachers need to teach? New ways to convey content
 - Using e-communication tools effectively
- Creating cognitive artifacts visuals are important
- Presenting our work as a group cohesion and feedback

Next Steps

Short Term (as part of this grant):

Continue implementation & assessment of our curriculum and team approach

Long Term (in future work):

Creating a blueprint for other university/high school partnerships around the country/world to:

- form *transdisciplinary* teams
- develop project-based, research-motivated curricula and student learning experiences:
 - in other Biological research problems + C
 - in other STEM disciplines + C
 - in non-STEM disciplines (e.g., Humanities) + C

"Building Educational Bridges between Computer Science and Biology through Transdisciplinary Teamwork and Modular Curriculum Design" NSF #1742446

Thank you

biocsbridge@wpi.edu

Carolina Ruiz, Shari Weaver, Liz Ryder Worcester Polytechnic Institute (WPI) Rob Gegear, UMass Dartmouth

