## Research on Effects of Integrating Computational Science and Model Building in Water Systems Teaching and Learning



#### STEM+C Summit Alexandria, VA 💧 September 2019











Integrating hydrologic systems knowledge and practice with computational thinking in authentic and innovative ways to support environmental science literacy.

> Model-Based Understanding of Hydrologic Systems

Computational Thinking Concepts & Practices

Comp Hydro

## **Environmental Science Literacy**

Knowledge and practice needed to participate in debates and discussions of socio-environmental problems.

Today, environmental science literacy requires computational thinking.







## Integrated Instruction & Research



## **Hydrologic Principles**

Distribution of potential energy & hydraulic conductivity govern flow of groundwater & contaminants





# **Data Sense Making**

- Applying scientific (hydrologic) principles in:
- Connecting levels of abstraction across multiple scales
- Making inferences about 3D systems from 2D representations & vice versa
- Managing uncertainty in data



## **Computational Thinking**

Applying scientific (hydrologic) principles in reasoning concerning:

- Abstraction (including parameterization & discretization)
- Boundary conditions
- Calibration & model validity judgments
- Advantages & limitations of computational modeling



### Learning Progression Research Questions

- 1. What are patterns in increasingly sophisticated ways that students think about and make sense of computational modeling of hydrologic systems?
- 1. Does participation in Comp Hydro support students in becoming more sophisticated in their reasoning with respect to the learning progression?

### **Assessment and Learning Progression Development**

#### Assessment

- Develop/revise items
- Collect data

**Model of Cognition** Develop/revise LP

Interpretation

Analyze data and identify patterns in students' learning performances

Framework

(NRC, 2006, Systems for State Science Assessment)



### Assessment and Learning Progression Development

#### Assessment

- Develop/revise items
- Collect data

Pre, post, & embedded constructed response items elicit students' connected knowledge & practice in:

- Hydrologic systems
- Data sense making
- Computational thinking

Model of Cognition Develop/revise LP Framework Interpretation Analyze data and identify patterns in students' learning

performances



(NRC, 2006, Systems for State Science Assessment)

## **Upper Anchor and Assessment Items**

| Progress Variables and Attributes                                                             | Items                       |
|-----------------------------------------------------------------------------------------------|-----------------------------|
| Defining the system                                                                           |                             |
| <ul> <li>Employ abstraction to reduce system into fundamental parameters</li> </ul>           | Parameter ID                |
| -Designate model domain and boundaries                                                        | Boundaries 1, 2             |
| -Decompose or discretize model to make it tractable to quant. Approaches                      | Discretization 1, 2         |
| Sense making with system data and representations                                             |                             |
| -How data are abstracted, represented in outputs: graphs, maps                                | Slope steepness             |
| -How system events/phenomena are represented in multiple, connected                           | Flow direction              |
| spatial/temporal scales & dimensions                                                          |                             |
| -How interpolation and extrapolation may be used                                              | Concentration interpolation |
| Affordances/constraints of different scales of resolution, discretization                     | Contour interval            |
| Explaining and predicting events with imperfect data and models                               |                             |
| -Define/employ rules (algorithms) using scientific principles to quantify system              | Model flow explanation      |
| processes & computationally reproduce system activities                                       |                             |
| -Calibrate model w/real data (observations) to demonstrate that model outputs                 | Judging model accuracy      |
| can reproduce events in real systems w/some level of confidence                               |                             |
| <ul> <li>Judge validity &amp; limitations of computational model &amp; its outputs</li> </ul> | Model problems              |
|                                                                                               | Judging uncertainty         |
| <ul> <li>-Use validated model to predict/evaluate system responses</li> </ul>                 | Model uses                  |

## **Upper Anchor and Assessment Items**

| Progress Variables and Attributes                                                | Items                       |
|----------------------------------------------------------------------------------|-----------------------------|
| Defining the system                                                              |                             |
| -Employ abstraction to reduce system into fundamental parameters                 | Parameter ID                |
| -Designate model domain and boundaries                                           | Boundaries 1, 2             |
| -Decompose or discretize model to make it tractable to quant. Approaches         | Discretization 1, 2         |
| Sense making with system data and representations                                |                             |
| -How data are abstracted, represented in outputs: graphs, maps                   | Slope steepness             |
| -How system events/phenomena are represented in multiple, connected              | Flow direction              |
| spatial/temporal scales & dimensions                                             |                             |
| -How interpolation and extrapolation may be used                                 | Concentration interpolation |
| Affordances/constraints of different scales of resolution, discretization        | Contour interval            |
| Explaining and predicting events with imperfect data and models                  |                             |
| -Define/employ rules (algorithms) using scientific principles to quantify system | Model flow explanation      |
| processes & computationally reproduce system activities                          |                             |
| -Calibrate model w/real data (observations) to demonstrate that model outputs    | Judging model accuracy      |
| can reproduce events in real systems w/some level of confidence                  |                             |
| -Judge validity & limitations of computational model & its outputs               | Model problems              |
|                                                                                  | Judging uncertainty         |
| <ul> <li>-Use validated model to predict/evaluate system responses</li> </ul>    | Model uses                  |

## Parameter ID

What info about each cell in the grid would be needed to compute and predict flow of water and MTBE through the system?

Explain why each type of info (parameter) you listed is important.



# Analysis

- 1. Work with sets of item responses
- 2. Identify patterns of indicators in responses
- 3. Group indicators into proposed LP levels
- 4. Iterations of coding, interrater reliability, and refinement
- 5. Sets of coded data subjected to IRT analysis
  - a. Wright maps
  - b. Learning evidence

Three learning progression levels emerged that are consistent across the progress variables.

### CT for Hydrologic Systems Modeling Learning Progression\*

| Levels                                   | Defining the system                                                                                                   | Sense-making w/data & representations                                                                                       | Explaining & predicting<br>w/models                                                                                                     |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Upper:<br>Principle-based<br>model users | Understands how abstraction,<br>parameterization, boundaries, &<br>discretization are used to define<br>system model. | Makes sense of model outputs<br>that employ abstractions across<br>scales & dimensions w/<br>interpolation & extrapolation. | Understands how algorithm,<br>calibration, & validation are used<br>to develop, refine, & judge<br>models used to explain &<br>predict. |
| Middle:<br>Procedural model<br>users     | Views model as connected to<br>world, but novice at connecting<br>CT & hydro principles to define<br>system model.    | Sense-making simplifications<br>leads to incomplete &/or<br>inaccurate inferences.                                          | Understands models are used to explain/predict but w/black box approach.                                                                |
| Lower:<br>Literal model<br>users         | Views model as "player" using<br>graphical user interface (GUI).<br>Model is "it," rather than a<br>representation.   | Makes informal literal and proximity-based interpretations of representations.                                              | Indicates models can't represent<br>world or possible to change<br>world by changing model.                                             |

\*Upper anchor represents environmental science literacy for participating in debates and discussions – a social participation goal.

#### How can a scientist judge if a computer model is accurate?

| Level                                    | Explaining & Predicting With<br>Models                                                                  | Indicator                                                           | Example Student Response                                                                                                                                                                  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upper:<br>Principle-based<br>model users | Understands how algorithm,<br>calibration, & validation are used to<br>develop, refine, & judge models. | Use calibration and/or iteration.                                   | They can test it and go back to the<br>actual site and take more tests to<br>make sure that it is right. And if not<br>they will calibrate it and keep fixing<br>it until it is accurate. |
| Middle:<br>Procedural model<br>users     | Understands models are used to explain/predict, but w/black box approach.                               | If model matches known<br>info, past research,<br>expected results. | They could check the research and information they already have.                                                                                                                          |
| Lower:<br>Literal model<br>users         | Indicates model can't represent<br>world or possible to change world<br>by changing model.              | It's not possible to judge model accuracy.                          | They can't.                                                                                                                                                                               |

#### How can a scientist judge if a computer model is accurate?

| Level                                    | Explaining & Predicting With<br>Models                                                                  | Indicator                                                           | Example Student Response                                                                                                                                                                  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upper:<br>Principle-based<br>model users | Understands how algorithm,<br>calibration, & validation are used to<br>develop, refine, & judge models. | Use calibration and/or iteration.                                   | They can test it and go back to the<br>actual site and take more tests to<br>make sure that it is right. And if not<br>they will calibrate it and keep fixing<br>it until it is accurate. |
| Middle:<br>Procedural model<br>users     | Understands models are used to explain/predict, but w/black box approach.                               | If model matches known<br>info, past research,<br>expected results. | They could check the research and information they already have.                                                                                                                          |
| Lower:<br>Literal model<br>users         | Indicates model can't represent<br>world or possible to change world<br>by changing model.              | It's not possible to judge model accuracy.                          | They can't.                                                                                                                                                                               |

#### How can a scientist judge if a computer model is accurate?

| Level                                    | Explaining & Predicting With<br>Models                                                                  | Indicator                                                           | Example Student Response                                                                                                                                                      |
|------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upper:<br>Principle-based<br>model users | Understands how algorithm,<br>calibration, & validation are used to<br>develop, refine, & judge models. | Use calibration and/or iteration.                                   | They can test it and go back to the actual site and take more tests to make sure that it is right. And if not they will calibrate it and keep fixing it until it is accurate. |
| Middle:<br>Procedural model<br>users     | Understands models are used to explain/predict, but w/black box approach.                               | If model matches known<br>info, past research,<br>expected results. | They could check the research and information they already have.                                                                                                              |
| Lower:<br>Literal model<br>users         | Indicates model can't represent<br>world or possible to change world<br>by changing model.              | It's not possible to judge model accuracy.                          | They can't.                                                                                                                                                                   |

# Learning Evidence

- Evidence below: 91 MT students, "explaining & predicted w/models" items
- Currently working on analysis with 1400 MT and AZ students w/all progress variables



#### Wright Map

- Green graph: distribution of student proficiency scores
- Purple triangles: difficulty thresholds for LP levels for each item



Latent regression w/fixed pre/post dummy variable

- Beta = 0.93, s.e. = 0.11, p < .001
- Students' post mean ability (pink) higher than pre (blue)



#### **Contact Info**

Website

www.ibis.colostate.edu/comph

<u>ydro/</u>

**Beth Covitt** 

beth.covitt@umontana.edu

The University of

#### **Research Products**

**Past Conference Products (and in preparation for publication submission)** Available on website:

- Students Ideas about Computational Thinking Concepts When Learning to Model Hydrologic Systems, Gunckel
- High School Students' Developing Ideas about Computational Modeling of Earth and Environmental Systems, Podrasky
- Teacher Perspectives of Teaching Computational Thinking, Cooper
- High School Students' Sense Making with Contour Maps When Learning to Model Hydrologic Systems, Covitt
- Student Empowerment in an Environmental Science Literacy Unit about Groundwater Contamination, Moreno

#### In preparation for NARST and publication submission

- Developing and Validating a Learning Progression for Computational Thinking in Earth and Environmental Systems, Covitt
- Intertwining Three Dimensions: Levels of Performance for Computational Thinking While Using Models of Hydrologic Systems, Gunckel

NATIONAL COMPUTATIONAL BEAR

This research is supported by a grant from the National Science Foundation: Research on Effects of Integrating Computational Science and Model Building on Water Systems Teaching and Learning (DRL 1543228). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the United States Department of Energy, or the United States Department of Agriculture.

Cary Institute

