Teachers' Experiences Integrating Data Sense-making and Computational Thinking into Science Instruction

Alan R. Berkowitz - Cary Institute (Baltimore Ecosystem Study) Beth Covitt - Univ. of Montana John C. Moore - Colorado State Univ.

Bess Caplan, Cary Institute (Baltimore Ecosystem Study) Agatha Podrasky, Univ. of Montana Amanda Morrison, Randall Boone - Colorado State Univ. Kristen L. Gunckel, Dan Moreno, Judith Cooper - Univ. of Arizona Robert Panoff, Garrett Love – Shodor Foundation

STEM+C Summit – Alexandria, VA – September 18, 2019

dro Comp Hydro Hypotheses, Inputs, Outputs

Hydrologic systems provide a real-world context for understanding and building proficiency with computational thinking.

Berkowitz et al. – 2019 STEM+C Summit

Comp Hydro – Teachers and PD – slide 3

Comp Hydro's approach to integrating science (hydrology, H), data (D) and computational thinking (C)

- Real world phenomena in the local environment
- Data in 2-dimensional representations maps, crosssections, signature graphs
- Physical models
- "Be the computational model" enact simulation
- Computational models Net Logo
- Proposing model-based solutions to real world problems in the local environment

Compydro **4 Corners of Comp Hydro**

Comp Hydro's approach to

supporting teachers in integrating H, D + C

- Strong focus on teacher knowledge (H, D and C)
- Active learning through the curriculum
- Ready-to-use curriculum with all requisite models, supplies
 - educative for teachers
 - engaging and accessible for students
- Supports for attending and responding to student thinking
- Teachers as collaborators in learning with us and each other
- Actively help teachers fit CH into their curriculum
- District and administrator support and resources

(Desimone 2009, Garet 2001, Yoon et al. Gerard et al. 2011)

Questions

- 1. How do our mix of teachers perceive, understand and value the integration of science, data and computational thinking, and how does this vary with their context?
- 2. How do teachers enact the Comp Hydro curriculum, and what lessons can we learn about the possibilities and challenges for this kind of instruction?
- 3. How do teachers respond to the supports provided by the project, and what lessons can we learn?

Data Sources

- Application forms (MT, AZ, MD, CO)
- Focus group interviews (MT, AZ, MD)
 - \odot Year 1 pre, during and post-implementation
 - Year 2 during and post-implementation
 - Year 3 pre (MT, MD), during and post-implementation
- O Curriculum implementation feedback forms (AZ, MD)
- PD leader reflections (MT, AZ, MD, CO)
- Comp Hydro assessments (MT, AZ, MD, CO)

Comp Hydro Teachers 34 High School Teachers

Course for Comp				
Hydro	MT	AZ	MD	СО
Earth Science	11	3		
Environmental Science	1		3	1
Integrated Science		2		
Biology		2	4	
Computer Science			2	
Engineering			3	
Physical Science	1			
Math			1	

1. Teachers' perception, understanding and value of integrating C, D + H?

Comp Motivations for Comp Hydro

Teacher: Pedagogy	16	Student: Learning	11
Hands on, field	5	Local, real	8
Integrate comp, hydro	3	Water	3
Fit, NGSS	3	Data	2
Technology	2	Impacts	2
Project-based	1	Interest in science	1
Hard to see	1	Achieve equity	1
Big Datasets	1	Computer jobs	1
Generic	1	Modeling, critical thinking	1
Teacher: Content	6	Teacher: Resources	3
Local issues	3	Teacher: Social	1
Hydrology	2		
Remote sensing	1	Number of teachers	
Sustainability	1	mentioning each reas	son on
Love topic	1	application forms	

Focus Groups: Perception of H+D+C integration

- Teachers discuss H, D and C separately, with fewer mentions of actual integration
- Most focused on H, with C and D contributing to H
 - Data learning, including BIG data!
 - Visualize invisible parts of system (GW sites only)
- Appreciated the lessons that integrated H, D and C
- D important for some teachers (in standards)
- C emphasized only by teachers already teaching it
 - MD engineering and computer science teachers
 - CO teacher with 2+ years experience with NetLogo

Focus Groups: Perception of H+D+C integration

- MD teachers appreciated being in a group with a mix of expertise among themselves as an important strength for their own integrated learning.
- Some MD teachers co-taught computation, science parts of unit.

Focus Groups: Perception of student benefits

- Appreciated the real-world context as a major motivator for relevance of both H and C
 - human health and GW contamination (MT, AZ)
 - flooding impacts on people (MD)
 - increase interest in science and citizenship from H
- Some appreciated that D and C engaged students
 - Visualizing conditions where groundwater can move up
 - Sense making while rasterizing and contouring
 - Variety of representations for the system
- Some mentioned the career and college readiness
 - C skills per se (MD teachers)
 - Water modeling (CO teacher)

Berkowitz et al. – 2019 STEM+C Summit

2. Teachers enactment of the Comp Hydro curriculum?

Comp Hydro Enactment

		MT	AZ	MD	CO
Implementation					
	Lessons completed	100%	100%	33% comp 100% hands on	100%
Curriculum					
L	essons (actual)	15 (15)	10 (17)	9-17 (14)	~15
F	ocus	E. Helena GW	Tucson GW	Flooding	Water Budget
Computers					
٦	уре	Desktops + Chromebooks	Indiv. Chromebooks	Desktops	Indiv. Laptops
ŀ	Availability	Somewhat Itd	Good	Very ltd.	Excellent
(Other Challenges	Internet, Tech support	Teacher comfort, not 100% reliable	Internet, Downloading NetLogo	None

Comp ydro **Focus Groups: Enactment**

- CO, teacher implemented his unit with very high fidelity
- MT, all the teachers completed all of the lessons
 - relatively high fidelity
 - limited use of the pre- and post-assessments
- AZ, all the teachers completed all of the lessons
 - Implementation was often procedural
 - Implementation of the NetLogo and hands-on lessons staff supported
- MD, implementation varied by type of lesson and teacher
 - Implementation was procedural
 - 100% of the hands-on activities were implemented
 - All teachers struggled with implementation of the data-rich lessons rainfall contouring, hydrographs
 - Only ENG, CS teachers one Env Sci teacher taught the NetLogo lessons
 - 3 teachers made use of the pre-assessment

Comp Joro Focus Groups: Constraints 1

- Computer access and technology
 - Lack of computers and internet access (all but CO)
 - Intermittent challenges with the technology
 - Chromebooks for all only worked 80% of the time
 - Technical assistance my common request of staff
- Curriculum
 - Many requests for more scripting, student handouts
- Teacher time/expertise
 - Learning and building expertise in C or H
 - [From PD leaders] Developing pedagogy for integrated teaching
- Teacher comfort improved in years 2 and 3

Comp Joro Focus Groups: Constraints 2

- Focus of instruction and fit with curriculum
 - H sense making >> C
 - D mixed
 - C only for the MD CS or ENG teachers and CO teacher
 - Biology teachers struggled to dedicate time beyond H
- Student response
 - Certain local issues flooding in MD are not as compelling nor familiar to students as we had expected
 - Other issues GW contaminant plume in MT did not need to be local to be engaging
 - Student management was a challenge AZ and MD

^{dro} ³. Teachers' response to the supports provided by the project?

Comp

Berkowitz et al. – 2019 STEM+C Summit

Comp ydro **Focus Groups: PD Supports**

- Curriculum development with frequent input from teachers before, during and after implementation
 - Teachers appreciated the responsiveness to their input
 - Sense of pride and ownership
- Collaboration and diverse inputs
- PD mix of goals and activities appreciated for
 - Practical implementation focus
 - Troubleshooting, addressing concerns
 - Building H, D, C and investigation skills
 - NetLogo experts from project
- Focus on research and attention to student perceived as mixed
- On-going support perceived as essential

Implications

Comp Hydro – Teachers and PD – slide 22

Implications

- Teacher perception of C, D, H integration
 - H, D and C all are new and challenging
 - The diversity of teacher goals could be an asset
 - Need for evidence that C and D support H learning
- Enactment of integrated instruction
 - Context constrains and shapes implementation
 - Students don't always respond to 'thorny local issues'
 - Teachers might not have the capacity, support or resources to re-create Comp Hydro-like units on their own
 - Deep, phenomena based units may not sustain teacher interest year-to-year
- PD supports
 - How to move teachers beyond procedural implementation

Comp Hydro Conceptual Framework

Hydrology – to – Computational Thinking

- Discretize the problem/system
- Parameterize
- Define rules, algorithms
- Set and specify rules for boundaries

Berkowitz et al. – 2019 STEM+C Summit